JEE (Main) MATHEMATICS SOLVED PAPER # 01st Feb. Shift 1 # Section A - If y = y(x) is the solution curve of the differential equation $\frac{dy}{dx} + y \tan x = x \sec x, 0 \le x \le \frac{\pi}{3}, \ y(0) = 1,$ then $y\left(\frac{\pi}{6}\right)$ is equal to - (1) $\frac{\pi}{12} \frac{\sqrt{3}}{2} \log_e \left(\frac{2\sqrt{3}}{e} \right)$ - (2) $\frac{\pi}{12} \frac{\sqrt{3}}{2} \log_e \left(\frac{2}{\sqrt{2}} \right)$ - (3) $\frac{\pi}{12} + \frac{\sqrt{3}}{2} \log_e \left(\frac{2}{a\sqrt{3}} \right)$ - (4) $\frac{\pi}{12} + \frac{\sqrt{3}}{2} \log_e \left(\frac{2\sqrt{3}}{e} \right)$ - Q. 2. Let R be a relation on R, given by $R = \{(a, b): 3a - 3b + \sqrt{7} \text{ is an irrational number}\}.$ Then R is - (1) an equivalence relation - (2) reflexive and symmetric but not transitive - (3) reflexive but neither symmetric nor transitive - (4) reflexive and transitive but not symmetric - For a triangle ABC, the value of $\cos 2A + \cos 2B$ Q. 3. + cos 2C is least. If its inradius is 3 and incentre is M, then which of the following is NOT correct? - (1) perimeter of $\triangle ABC$ is $18\sqrt{3}$ - (2) $\sin 2A + \sin 2B + \sin 2C = \sin A + \sin B + \sin C$ - (3) $\overrightarrow{MA}.\overrightarrow{MB} = -18$ - (4) area of $\triangle ABC$ is $\frac{27\sqrt{3}}{2}$ - Q. 4. Let S be the set of all solutions of the equation $\cos^{-1}(2x) - 2\cos^{-1}(\sqrt{1-x^2}) = \pi, x \in \left[-\frac{1}{2}, \frac{1}{2}\right].$ Then $\sum_{x=0}^{\infty} 2\sin^{-1}(x^2-1)$ is equal to - (1) $\pi 2\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$ (2) $\pi \sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$ - Let S denote the set of all real values of λ such that the system of equations $\lambda x + y + z = 1$ $x + y + \lambda z = 1$ is inconsistent, then $\sum_{\lambda \in S} (|\lambda|^2 + |\lambda|)$ is equal to - **(1)** 4 - **(2)** 12 **(3)** 6 - O. 6. In a binomial distribution B(n,p), the sum and the product of the mean and the variance are 5 and 6 respectively, then 6(n + p - q) is equal to - **(1)** 52 - **(2)** 50 - (3) 51 - **(4)** 53 - The combined equation of the two lines ax + by+ c = 0 and a'x + b'y + c' = 0 can be written as (ax + by + c) (a'x + b'y + c') = 0. The equation of the angle bisectors of the lines represented by the equation $$2x^2 + xy - 3y^2 = 0 \text{ is}$$ 1) $$x^2 - y^2 - 10xy = 0$$ (2) $x^2 - y^2 + 10xy = 0$ $$2x^{2} + xy - 3y^{2} = 0 \text{ is}$$ (1) $x^{2} - y^{2} - 10xy = 0$ (2) $x^{2} - y^{2} + 10xy = 0$ (3) $3x^{2} + 5xy + 2y^{2} = 0$ (4) $3x^{2} + xy - 2y^{2} = 0$ Q. 8. The area enclosed by the closed curve C given by the differential equation $$\frac{dy}{dx} + \frac{x+a}{y-2} = 0$$, $y(1) = 0$ is 4π . Let P and Q be the points of intersection of the curve C and the y-axis. If normals at P and Q on the curve C intersect x-axis at points R and S respectively, then the length of the line segment - (2) $\frac{4\sqrt{3}}{3}$ (3) $2\sqrt{3}$ (4) $\frac{2\sqrt{3}}{3}$ The value of O. 9. $$\frac{1}{1!50!} + \frac{1}{3!48!} + \frac{1}{5!46!} + \dots + \frac{1}{49!2!} + \frac{1}{5!1!1!}$$ is: - (1) $\frac{2^{50}}{51!}$ (2) $\frac{2^{51}}{50!}$ (3) $\frac{2^{50}}{50!}$ (4) $\frac{2^{51}}{51!}$ - Q.10. The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are 1, 3, 5 then the sum of cubes of the remaining two observations is - **(1)** 1216 **(2)** 1072 - (3) 1456 - **Q. 11.** The sum to 10 terms of the series $$\frac{1}{1+1^2+1^4} + \frac{2}{1+2^2+2^4} + \frac{3}{1+3^2+3^4} + \dots$$ is - (1) $\frac{55}{111}$ (2) $\frac{56}{111}$ (3) $\frac{58}{111}$ (4) $\frac{59}{111}$ $$\frac{x-5}{1} = \frac{y-2}{2} = \frac{z-4}{-3}$$ and $\frac{x+3}{1} = \frac{y+5}{4} = \frac{z-1}{-5}$ is - (1) $5\sqrt{3}$ (2) $7\sqrt{3}$ (3) $6\sqrt{3}$ (4) $4\sqrt{3}$ - Q. 13. $\lim_{n \to \infty} \left[\frac{1}{1+n} + \frac{1}{2+n} + \frac{1}{3+n} + \dots + \frac{1}{2n} \right]$ - (1) log_e2 - (2) $\log_e\left(\frac{3}{2}\right)$ - (3) $\log_e\left(\frac{2}{2}\right)$ - **(4)** 0 - **Q. 14.** Let the image of the point P(2, -1, 3) in the plane x + 2y - z = 0 be Q. Then the distance of the plane 3x + 2y + z + 29 = 0 from the point Q is - (1) $\frac{24\sqrt{2}}{7}$ (2) $2\sqrt{14}$ (3) $3\sqrt{14}$ (4) $\frac{22\sqrt{2}}{7}$ - **Q. 15.** Let $f(x) = 2x + \tan^{-1} x$ and $g(x) = \log_e(\sqrt{1 + x^2} + x)$, $x \in [0, 3]$. Then - (1) $\min f(x) = 1 + \max g'(x)$ - (2) $\max f(x) > \max g(x)$ - (3) there exist $0 < x_1 < x_2 < 3$ such that f(x) < $g(x), \forall \in (x_1, x_2)$ - (4) there exists $\hat{x} \in [0,3]$ such that $f'(\hat{x}) < g'(\hat{x})$ - **Q. 16.** If the orthocentre of the triangle, whose vertices are (1, 2) (2, 3) and (3, 1) is (α, β) , then the quadratic equation whose roots are $\alpha + 4\beta$ and $4\alpha + \beta$, is (1) $x^2 - 20x + 99 = 0$ (2) $x^2 - 19x + 90 = 0$ (3) $x^2 - 22x + 120 = 0$ (4) $x^2 - 18x + 80 = 0$ - **Q. 17.** Let $S = \{x : x \in \mathbb{R} \text{ and } (\sqrt{3} + \sqrt{2})^{x^2 4} + (\sqrt{3} + \sqrt{2})^{x^2 4} \}$ $(\sqrt{3} - \sqrt{2})^{x^2 - 4} = 10$ Then n(S) is equal to - **(2)** 0 - **(3)** 6 - **Q. 18.** If the center and radius of the circle $\left| \frac{z-2}{z-3} \right| = 2$ are respectively (α, β) and γ . then 3 $(\alpha + \beta + \gamma)$ is equal to - **(1)** 11 - **(2)** 12 **(4)** 2 Q.19. Let $f(x) = \begin{bmatrix} \sin^2 x & \cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x & \sin 2x \end{bmatrix}$, $x \in \left| \frac{\pi}{6}, \frac{\pi}{2} \right|$. If α and β respectively are the maximum and the minimum values of f, then - (1) $\alpha^2 + \beta^2 = \frac{9}{2}$ (2) $\beta^2 2\sqrt{\alpha} = \frac{19}{4}$ (3) $\alpha^2 \beta^2 = 4\sqrt{3}$ (4) $\beta^2 + 2\sqrt{\alpha} = \frac{19}{4}$ - **Q. 20.** The negation of the expression $q \vee ((\sim q) \wedge p)$ is equivalent to - (1) $(\sim p) \vee (\sim q)$ - (2) $p \wedge (\sim q)$ - **(3)** $(\sim p) \vee q$ - $(4) \quad (\sim p) \land (\sim q)$ # **Section B** - **O. 21.** Let $\vec{v} = \alpha \hat{i} + 2 \hat{j} 3 \hat{k}, \vec{w} = 2 \alpha \hat{i} + \hat{j} \hat{k}$ and \vec{u} be a vector such that $|\vec{u}| = \alpha > 0$. If the minimum value of the scalar triple product $|\vec{u}\vec{v}\vec{w}|$ is $-\alpha\sqrt{3401}$. and $|\vec{u}.\hat{i}|^2 = \frac{m}{n}$ where m and n are coprime natural numbers, then m + m is equal to - Q. 22. The number of words, with or without meaning, that can be formed using all the letters of the word ASSASSINATION so that the vowels occur together, is - **Q. 23.** The remainder, when $19^{200} + 23^{200}$ is divided by - Q. 24. The number of 3-digit numbers, that are divisible by either 2 or 3 but not divisible by 7, is - **Q. 25.** Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $f'(x) + f(x) = \int_0^2 f(t)dt$. If $f(0) = e^{-2}$, then $2 f(0) - \frac{1}{2} f(0) = \frac{1}{2} f(0)$ f(2) is equal to - **Q. 26.** If $f(x) = x^2 + g'(1) x + g''(2)$ and $g(x) = f(1) x^2 + xf'(x) + f''(x)$, then the value of f(4) g(4) is equal - **Q. 27.** Let A be the area bounded by the curve y = x | x-3, the x-axis and the ordinates x = -1 and x = 2. Then 12A is equal to - **Q. 28.** If $\int_0^1 (x^{21} + x^{14} + x^7) (2x^{14} + 3x^7 + 6)^{1/7} dx$ $=\frac{1}{l}(11)^{\frac{m}{n}}$ where $l, m, n \in \mathbb{N}, m$ and n are coprime - then l + m + n is equal to - **Q. 29.** Let $a_1 = 8$, a_2 , a_3 , ..., a_n be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170, then the product of its middle two terms is - **Q. 30.** A (2, 6, 2), B $(-4, 0, \lambda)$, C (2, 3, -1) and D(4, 5, 0), $|\lambda| \le 5$ are the vertices of a quadrilateral ABCD. If its area is 18 square units, then $5-6\lambda$ is equal to # **Answer Key** | Q. No. | Answer | Topic Name | Chapter Name | |--------|--------|--------------------------------|------------------------------| | 1 | (2) | Linear differential equation | Differential equations | | 2 | (3) | Equivalence relation | Set, relations and functions | | 3 | (4) | Triangles | Trigonometry | | 4 | (3) | Inverse trigonometric function | Trigonometry | | 5 | (3) | System of equations | Matrices and determinant | | 6 | (1) | Mean and variance | Statistics and probability | | 7 | (1) | Angle bisector | Coordinate geometry | | Q. No. | Answer | Topic Name | Chapter Name | |--------|---------|----------------------------------|-----------------------------------------| | 8 | (2) | Separable variable form | Differential equations | | 9 | (1) | Summation of series | Binomial theorem | | 10 | (2) | Mean | Statistics and probability | | 11 | (1) | Special series | Sequence and series | | 12 | (3) | Shortest distance | Three dimensional geometry | | 13 | (1) | Limit | Limit, continuity and differentiability | | 14 | (3) | Image of a point | Three dimensional geometry | | 15 | (2) | Monotonicity | Limit, continuity and differentiability | | 16 | (1) | Slope | Coordinate geometry | | 17 | (1) | Solution of a quadratic equation | Complex number and quadratic equation | | 18 | (2) | Solution | Complex number and quadratic equation | | 19 | (2) | Expansion | Matrices and determinant | | 20 | (4) | Negation of a statement | Mathematical reasoning | | 21 | [3501] | Dot and cross product | Vector algebra | | 22 | [50400] | Number of ways | Permutation and combination | | 23 | [29] | Remainder theorem | Binomial theorem | | 24 | [514] | Operations on set | Set, relations and functions | | 25 | [1] | Leibnitz rule | Integral calculus | | 26 | [14] | Higher order derivative | Limit, continuity and differentiability | | 27 | [62] | Area under the curve | Integral calculus | | 28 | [63] | General rule of integration | Integral calculus | | 29 | [754] | Sum of n terms | Sequence and series | | 30 | [11] | Area of quadrilateral | Vector algebra | # **Solutions** ...(i) # Section A # 1. Option (2) is correct. The given differential equation is : $$\frac{dy}{dx} + y \tan x = x \sec x, 0 \le x \le \frac{\pi}{3}$$ As the above differential equation is linear i.e., $$\frac{dy}{dx} + P(x)y = Q(x)$$ So, integrating factor (I.F.) = $e^{\int P(x)dx}$ $$=e^{\int \tan x \, dx} = e^{\ln \sec x} = \sec x$$ Now, the solution is: $$y \times I.F. = \int Q(x) \times I.F.dx$$ $$\Rightarrow y \times \sec x = \int x \sec^2 x \, dx$$ $$= x \int \sec^2 dx - \int \left(\frac{d}{dx}(x) \int \sec^2 x \, dx\right) dx$$ $$= x \tan x - \int \tan x \, dx$$ $$\Rightarrow y \sec x = x \tan x - \ln \sec x + C$$ Using initial condition, y(0) = 1, we get $$(1) \sec 0 = 0 - \ln \sec 0 + C$$ $$\Rightarrow 1 = -\ln 1 + C \Rightarrow C = 1$$ Now, put C = 1 in equation (i) we get $$y \sec x = x \tan x - \ln \sec x + 1 \qquad \dots (i)$$ Put $$x = \frac{\pi}{6}$$ in equation (ii) we get $$y \times \sec \frac{\pi}{6} = \frac{\pi}{6} \times \tan \frac{\pi}{6} - \ln \sec \frac{\pi}{6} + 1$$ $$\Rightarrow y \times \frac{2}{\sqrt{3}} = \frac{\pi}{6} \times \frac{1}{\sqrt{3}} - \ln\left(\frac{2}{\sqrt{3}}\right) + 1$$ $$\Rightarrow y = \frac{\pi}{12} - \frac{\sqrt{3}}{2} \ln\left(\frac{2}{\sqrt{3}}\right) + \frac{\sqrt{3}}{2} \ln e$$ $$= \frac{\pi}{12} - \frac{\sqrt{3}}{2} \left(\ln \left(\frac{2}{e\sqrt{3}} \right) \right) \qquad \left(\ln a - \ln b = \ln \frac{a}{b} \right)$$ # 2. Option (3) is correct. The given relation is $$R = \{(a, b) : 3a - 3b + \sqrt{7} \text{ is an irrational number}\}$$ # (i) Reflexive: Let $(a, a) \in \mathbb{R}$ So, $3a - 3a + \sqrt{7} = \sqrt{7}$, Which is an irrational number \therefore R is reflexive # (ii) Symmetric: Let $(a, b) \in \mathbb{R}$ Let $$a = \frac{\sqrt{7}}{3}$$ and $b = 0$ So, $$3a - 3b + \sqrt{7} = 3\left(\frac{\sqrt{7}}{3}\right) - 3(0) + \sqrt{7}$$ $$=2\sqrt{7}$$, an irrational number Now, $$3b - 3a + \sqrt{7} = 3(0) - 3\left(\frac{\sqrt{7}}{3}\right) + \sqrt{7}$$ = 0, a rational number So, $$(b, a) \notin \mathbb{R}$$ Hence, R is not symmetric # (iii) Transitive: Let $$(a, b) = \left(\frac{\sqrt{7}}{3}, 1\right) \in \mathbb{R}$$ and $(b, c) = \left(1, \frac{2\sqrt{7}}{3}\right) \in \mathbb{R}$ So, $$3a - 3c + \sqrt{7} = 3\left(\frac{\sqrt{7}}{3}\right) - 3\left(\frac{2\sqrt{7}}{3}\right) + \sqrt{7}$$ $$=\sqrt{7}-2\sqrt{7}+\sqrt{7}=0$$, a rational number. So, $$(a, c) \notin \mathbb{R}$$ Hence, R is not transitive #### HINT An equivalence relation is the relation which is reflexive, symmetric and transitive. # 3. Option (4) is correct. Since $$\cos 2A + \cos 2B + \cos 3C = \frac{-3}{2}$$ $$\Rightarrow$$ A = B = C = 60° As, inradius = $$\frac{\text{Area of } \Delta ABC}{\text{Semi-perimeter of } \Delta ABC}$$ $$\Rightarrow 3 = \frac{\frac{\sqrt{3}}{4}(a^2)}{\frac{3a}{2}} = \frac{a}{2\sqrt{3}}$$ (because triangle ABC is equilateral triangle) $$\Rightarrow a = 6\sqrt{3}$$ Hence, perimeter of triangle = $3 \times 6\sqrt{3} = 18\sqrt{3}$ Area of triangle = $$\frac{\sqrt{3}}{4} \times (6\sqrt{3})^2 = \frac{108\sqrt{3}}{4} = 27\sqrt{3}$$ # HINT: In radius of a circle = $$\frac{\text{Area of triangle}}{\text{Semi-perimeter of triangle}}$$ #### 4. Option (3) is correct. #### We have $$\cos^{-1}(2x) - 2\cos^{-1}(\sqrt{1 - x^2}) = \pi, x \in \left[\frac{-1}{2}, \frac{1}{2}\right]$$ $$\Rightarrow \cos^{-1}(2x) - \left[\cos^{-1}(2(1 - x^2) - 1)\right] = \pi$$ $$\Rightarrow \cos^{-1}(2x) - [\cos^{-1}(-2x^2 + 1)] = \pi$$ $$\Rightarrow -\cos^{-1}[-2x^2 + 1] = \pi - \cos^{-1}2x$$ $$\Rightarrow 1 - 2x^2 = -2x \Rightarrow 2x^2 - 2x - 1 = 0$$ $$\Rightarrow x = \frac{2 \pm \sqrt{4 + 8}}{4} = \frac{2 \pm 2\sqrt{3}}{4} = \frac{1 \pm \sqrt{3}}{2}$$ As $$x \in \left[\frac{-1}{2}, \frac{1}{2} \right] \Rightarrow x = \frac{1 - \sqrt{3}}{2}$$ $$\therefore \sum 2\sin^{-1}[x^2 - 1] = \sum 2\sin^{-1}\left[\frac{-\sqrt{3}}{2}\right] = \frac{-2\pi}{3}$$ # 5. Option (3) is correct. The given system of equation is inconsistent So, $\Delta = 0$ $$\Rightarrow \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$$ $$\begin{vmatrix} Apply R_3 \rightarrow R_3 & 2 \\ \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 0 & 1 - \lambda & \lambda - 1 \end{vmatrix} = 0$$ Expanding along C_1 , we get $$\lambda \left(\lambda \left(\lambda - 1\right) - (1 - \lambda)\right) - 1 \left(1 \left(\lambda - 1\right) - (1 - \lambda)\right) + 0 = 0$$ $$\Rightarrow \lambda \left(\lambda^2 - \lambda - 1 + \lambda\right) - 1 \left(\lambda - 1 - 1 + \lambda\right) = 0$$ $$\Rightarrow \lambda \left(\lambda^2 - 1\right) - 2(\lambda - 1) = 0$$ $$\Rightarrow (\lambda - 1) \left[\lambda \left(\lambda + 1\right) - 2\right] = 0$$ $$\Rightarrow (\lambda - 1) \left(\lambda^2 + \lambda - 2\right) = 0$$ $$\Rightarrow (\lambda - 1) \left(\lambda - 1\right) \left(\lambda + 2\right) = 0$$ $$\Rightarrow \lambda = 1, -2$$ For $\lambda = -2$ (: $\lambda = 1$ is rejected) $$\sum_{\lambda = 0} \left(|\lambda|^2 + |\lambda|\right) = 4 + 2 = 6$$ #### 6. Option (1) is correct. #### Here, $$mean = np$$ Variance = $$npq$$ So, $$np + npq = 5$$ $$\Rightarrow np(1+q) = 5 \qquad \dots (i)$$ And $$(np) (npq) = 6$$...(ii) $\Rightarrow n^2 p^2 q = 6$...(iii) So, we have $$\frac{n^2p^2(1+q)^2}{n^2n^2q} = \frac{25}{6}$$ $$\Rightarrow 6 (1 + q)^{2} = 25q \Rightarrow 6 + 6q^{2} + 12q = 25q$$ $$\Rightarrow 6q^{2} - 13q + 6 = 0 \Rightarrow 6q^{2} - 9q - 4q + 6 = 0$$ $$\Rightarrow 3q (2q-3) - 2 (2q-3) = 0$$ $$\Rightarrow (3q-2)(2q-3)=0$$ $$\therefore q = \frac{2}{3}, \frac{3}{2}$$ (rejected) Hence, $$p = 1 - q = 1 - \frac{2}{3} = \frac{1}{3}$$ Using (i), we get $$n \times \frac{1}{3} \left(1 + \frac{2}{3} \right) = 5 \Rightarrow n \times \frac{5}{9} = 5 \Rightarrow n = 9$$ So, $$6(n + p - q) = 6\left(9 + \frac{1}{3} - \frac{2}{3}\right)$$ $$=6\left(9-\frac{1}{3}\right)=6\times\frac{26}{3}=52$$ # 7. Option (1) is correct. The given equation of lines is : $2x^2 + xy - 3y^2 = 0$:. Equation of angle bisector is: $$\frac{x^2 - y^2}{xy} = \frac{2+3}{\frac{1}{2}}$$ [Here, $a = 2$, $b = -3$, $h = \frac{1}{2}$] $$\Rightarrow x^2 - y^2 = 10xy \Rightarrow x^2 - y^2 - 10xy = 0$$ # 8. Option (2) is correct. $$\frac{dy}{dx} + \frac{x+a}{y-2} = 0, y(1) = 0$$ $$\Rightarrow \int (y-2)dy = -\int dx(x+a)$$ $$\Rightarrow \frac{y^2}{2} - 2y = -\frac{x^2}{2} - ax + C$$ $$\Rightarrow \frac{y^2 - 4y}{2} = \frac{-x^2 - 2ax + 2c}{2}$$ $$\Rightarrow y^2 - 4y + x^2 + 2ax - c_1 = 0 \qquad ...(i)$$ Using initial condition, we get $$\Rightarrow 0 - 0 + 1 + 2a - c_1 = 0$$ $$\Rightarrow c_1 = 1 + 2a$$ $$\therefore x^{2} + y^{2} + 2ax - 4y = 1 + 2a$$ [Using (i) The above equation is of circle of area 4π $$\Rightarrow$$ Radius = 2 $$\Rightarrow \text{Radius} = 2$$ \Rightarrow $r^2 = (-a)^2 + 2^2 + 1 + 2a = 4$ $$\Rightarrow a = -1$$ Hence equation of circle is $$x^2 + y^2 - 2x - y = -1$$ $$\Rightarrow (x-1)^2 + (y-2)^2 = 4$$ For intersection point, put x = 0 $$\Rightarrow (y-2)^2 = 4-1 = 3 \Rightarrow y-2 = \pm \sqrt{3}$$: $$(0, \pm \sqrt{3} + 2) \Rightarrow P(0, \sqrt{3} + 2) Q(0, -\sqrt{3} + 2)$$ So, equation of line passing the P & (1, 2) is $$\left(y - \left(\sqrt{3} + 2\right)\right) = -\sqrt{3}(x)$$ \therefore The above line will cut *x*-axis at y = 0 $$\therefore R \equiv \left(\frac{\sqrt{3}+2}{\sqrt{3}},0\right)$$ Now, equation of line passing the Q & (1, 2) is $$(y-(-\sqrt{3}+2))=\sqrt{3}x$$ The above line will cut *x*-axis at y = 0 $$\therefore S \equiv \left(\frac{\sqrt{3}-2}{\sqrt{3}},0\right)$$ Hence, RS = $$\sqrt{\left(\frac{\sqrt{3}-2}{\sqrt{3}} - \frac{\sqrt{3}+2}{\sqrt{3}}\right)^2 + 0}$$ = $\sqrt{\left(\frac{\sqrt{3}-2-\sqrt{3}-2}{\sqrt{3}}\right)^2} = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3}$ #### HINT: A separable differential equation can be solved by separating the variables and differential of same type on same side and then integrating. # 9. Option (1) is correct. Let E = $$\frac{1}{1!50!} + \frac{1}{3!48!} + \frac{1}{5!46!} + \dots + \frac{1}{49!2!} + \frac{1}{51!1!}$$ Multiply and divide by 51!, we get $$E = \frac{1}{51!} \left[\frac{51!}{50!1!} + \frac{51!}{3!48!} + \dots + 1 \right]$$ $$= \frac{1}{51!} \left[^{51}C_{50} + ^{51}C_{48} + \dots + ^{51}C_{2} + ^{51}C_{9} \right]$$ $$= \frac{1}{51!} \times 2^{51-1} \qquad \left[\because 2^{n-1} = {}^{n}C_{0} + {}^{n}C_{2} + \dots + {}^{n}C_{n-1} \right]$$ $$= \frac{2^{50}}{51!}$$ #### 10. Option (2) is correct. Let missing observations be p & q $$\Rightarrow \frac{1+3+5+p+q}{5} = 5$$ $$\Rightarrow 9+p+q=25$$ $$\Rightarrow p+q=16$$ Also, variance = 8 ...(i) $$\Rightarrow \frac{1^2 + 3^2 + 5^2 + p^2 + q^2}{5} - 25 = 8$$ $$\Rightarrow 1 + 9 + 25 + p^2 + q^2 = 33 \times 5$$ \Rightarrow p^2 + q^2 = 165 - 35 = 130 \qquad \text{...(ii)} As, we know that $$(p+q)^2 = p^2 + q^2 + 2pq$$ $$\Rightarrow 16^2 = 130 + 2pq$$ (Using (i) & (ii)) $$\Rightarrow 2pq = 256 - 130 = 126$$ $$\Rightarrow pq = 63$$...(iii) Now, sum of cubes of $p \& q = p^3 + q^3$ $$\Rightarrow (p+q)^3 - 3pq(p+q)$$ $$\Rightarrow 16^3 - 3 \times 63 (16) = 4096 - 3024 = 1072$$ #### 11. Option (1) is correct. We have, $$\sum_{r=1}^{10} \frac{r}{1+r^2+r^4}$$ $$= \frac{1}{2} \left\{ \sum_{r=1}^{10} \left[\frac{1}{r^2 - r + 1} - \frac{1}{r^2 + r + 1} \right] \right\}$$ P(2, -1, 3) Μ Q (a, b, c) $$= \frac{1}{2} \left\{ \left[\frac{1}{1} - \frac{1}{3} \right] + \left[\frac{1}{3} - \frac{1}{7} \right] + \dots + \left[\frac{1}{91} - \frac{1}{111} \right] \right\}$$ $$= \frac{1}{2} \left\{ 1 - \frac{1}{111} \right\} = \frac{1}{2} \times \frac{110}{111} = \frac{55}{111}$$ # 12. Option (3) is correct. The given lines are: $$L_1: \frac{x-5}{1} = \frac{y-2}{2} = \frac{z-4}{-3}$$ $$L_2$$: $\frac{x+3}{1} = \frac{y+5}{4} = \frac{z-1}{-5}$ For L₁: $$\vec{a}_1 = 5\hat{i} + 2\hat{j} + 4\hat{k}$$; $\vec{r}_1 = \hat{i} + 2\hat{j} - 3\hat{k}$ For L₂: $\vec{a}_2 = -3\hat{i} - 5\hat{i} + \hat{k}$; $\vec{r}_2 = \hat{i} + 4\hat{i} - 5\hat{k}$ Hence, the vector product of $\vec{r}_1 \& \vec{r}_2$ is : $$\vec{r}_1 \times \vec{r}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 1 & 4 & -5 \end{vmatrix}$$ Expanding along R_1 , we get $$\vec{r}_1 \times \vec{r}_2 = \hat{i}(-10+12) - \hat{j}(-5+3) + \hat{k}(4-2)$$ $$=2\hat{i}+2\hat{j}+2\hat{k}$$ Hence, the shortest distance between the given lines $$\begin{split} d &= \left| \frac{(\vec{r}_1 \times \vec{r}_2).(\vec{a}_1 - \vec{a}_2)}{|\vec{r}_1 \times \vec{r}_2|} \right| \\ &= \left| \frac{(2\hat{i} + 2\hat{j} + 2\hat{k}).(8\hat{i} + 7\hat{j} + 3\hat{k})}{\sqrt{2^2 + 2^2 + 2^2}} \right| \\ &= \left| \frac{16 + 14 + 6}{\sqrt{12}} \right| = \frac{36}{2\sqrt{3}} = 6\sqrt{3} \end{split}$$ # 13. Option (1) is correct. $$\lim_{n\to\infty} \left[\frac{1}{1+n} + \frac{1}{2+n} + \frac{1}{3+n} + \dots + \frac{1}{2n} \right]$$ $$= \lim_{n\to\infty} \sum_{r=1}^{n} \frac{1}{r+n}$$ Taking *n* common in the denominator, $$= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n \left[\frac{r}{n} + 1 \right]} = \int_{0}^{1} \frac{1}{1+x} dx = \left[\ln(1+x) \right]_{0}^{1}$$ $$= [\ln (2) - \ln 1) = \ln 2 = \log_e 2$$ #### HINT: Use the fact: $$\sum_{r=1}^{n} \frac{1}{n\left(\frac{r}{n}+1\right)} = \int_{0}^{1} \frac{dx}{1+x}$$ #### 14. Option (3) is correct. Let the point Q be (a, b, c) Hence, equation of line PM is $$\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-3}{-1} = \lambda$$ $$\Rightarrow x = \lambda + 2, y = 2\lambda - 1,$$ $$z = -\lambda + 3$$ Hence, $(\lambda + 2, 2\lambda - 1, -\lambda + 3)$ lie on the plane, So, $$(\lambda + 2) + 2(2\lambda - 1) - (-\lambda + 3) = 0$$ $$\Rightarrow \lambda + 2 + 4\lambda - 2 + \lambda - 3 = 0$$ $$\Rightarrow 6\lambda = 3 \Rightarrow \lambda = \frac{1}{2}$$: Point $$M = \left(\frac{1}{2} + 2, 2\left(\frac{1}{2}\right) - 1, -\frac{1}{2} + 3\right)$$ $$\equiv \left(\frac{5}{2},0,\frac{5}{2}\right)$$ Now, as M is mid point of PQ. So, $$\frac{2+a}{2} = \frac{5}{2}$$; $\frac{-1+b}{2} = 0$; $\frac{3+c}{2} = \frac{5}{2}$ $$\Rightarrow a = 5 - 2; b = 0 + 1; c = 5 - 3$$ = 3 = 1 = 2 $$\therefore Q \equiv (3, 1, 2)$$ So, required distance, $$= \frac{3(3) + 2(1) + 2 + 29}{\sqrt{3^2 + 1^2 + 2^2}}$$ $$=\left|\frac{9+2+2+29}{\sqrt{14}}\right|=\frac{42}{\sqrt{14}}\times\frac{\sqrt{14}}{\sqrt{14}}$$ $$=3\sqrt{14}$$ units # 15. Option (2) is correct. Given $f(x) = 2x + \tan^{-1} x$ $$\Rightarrow f(x) = 2 + \frac{1}{1 + x^2} > 0$$ for $x \in [0, 3]$ So, $$f(x)$$ is increasing in [0, 3] $f(0) = 0$ and $f(3) = 6 + \tan^{-1} 3$ Also, $$g(x) = \log_{e}(\sqrt{1 + x^{2}} + x)$$ $$\Rightarrow g'(x) = \frac{1}{\sqrt{1 + x^2 + x}} \times \left[\frac{1 \times 2x}{2\sqrt{1 + x^2}} + 1 \right]$$ $$= \frac{1}{x + \sqrt{1 + x^2}} \left[\frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}} \right] = \frac{1}{\sqrt{1 + x^2}}$$:. $$g'(x) > 0$$ for $x \in [0, 3]$ \therefore g(x) is increasing in [0, 3] $$g(0) = \log_{\rho}(\sqrt{1+0}+0) = \log_{\rho}(1) = 0$$ $$g(3) = \log_{e}(\sqrt{1+9} + 3) = \log_{e}(\sqrt{10} + 3)$$ #### HINT: Find the first derivaties and use the conditions to check whether f(x) & g(x) are increasing or not. # 16. Option (2) is correct. Slope of line (BH) \times Slope of line (AC) = -1 $$\Rightarrow \left(\frac{\beta - 3}{\alpha - 2}\right) \times \left(\frac{1 - 2}{3 - 1}\right) = -1$$ $$\Rightarrow (\beta - 3) = (\alpha - 2) (2)$$ $$\Rightarrow \beta - 3 = 2\alpha - 4 \Rightarrow \beta = 2\alpha - 1$$ Also, slope of line (AD) \times slope of line (BC) = -1 $$\Rightarrow \left(\frac{\beta-2}{\alpha-1}\right) \times \left(\frac{1-3}{3-2}\right) = -1 \Rightarrow \beta-2 = (\alpha-1)\frac{1}{2}$$ $$\Rightarrow 2(2\alpha - 1) - 2 = \alpha - 1 \Rightarrow \alpha = \frac{5}{3}$$ Sum = $$\alpha + 4\beta = \frac{33}{3} = 11$$ Sum = $$4\alpha + \beta = \frac{27}{3} = 9$$:. Required equation is $$x^{2} - (11 + 9) x + (11 \times 9) = 0$$ $$\Rightarrow x^{2} - 20x + 99 = 0$$ # 17. Option (1) is correct. $$S = \left\{ x : x \in \mathbb{R} \& (\sqrt{3} + \sqrt{2})^{x^2 - 4} + (\sqrt{3} - \sqrt{2})^{x^2 - 4} = 10 \right\}$$ Let $$(\sqrt{3} + \sqrt{2})^{x^2 - 4} = a$$...(i) $$\Rightarrow (\sqrt{3} - \sqrt{2})^{x^2 - 4} = \frac{1}{3}$$...(ii) So, $$t + \frac{1}{t} = 10$$ $$\Rightarrow \frac{t^2+1}{t} = 10 \Rightarrow t^2-10t+1=0$$ $$\Rightarrow t = \frac{10 \pm \sqrt{100 - 4}}{2} = \frac{10 \pm 4\sqrt{6}}{2}$$ $$= 5 \pm 2\sqrt{6} = \left((3+2) \pm 2\sqrt{6} \right)$$ $$=(\sqrt{3}\pm\sqrt{2})^2$$ Case (i): $$(\sqrt{3} + \sqrt{2})^{x^2 - 4} = (\sqrt{3} + \sqrt{2})^2$$ $$\Rightarrow x^2 - 4 = 2 \Rightarrow x^2 = 6 \Rightarrow x = \pm \sqrt{6}$$ Case (ii): $$(\sqrt{3} + \sqrt{2})^{x^2 - 4} = (\sqrt{3} - \sqrt{2})^2$$ = $(\sqrt{3} + \sqrt{2})^{-2}$ $$\Rightarrow x^2 - 4 = -2 \Rightarrow x^2 = 2 \Rightarrow x = \pm \sqrt{2}$$ $$\therefore n(S) = 4$$ #### 18. Option (2) is correct. Let $$z = x + iy$$ $$\Rightarrow |x + iy - 2| = 2 |x + iy - 3|$$ $$\Rightarrow (x - 2)^2 + y^2 = 4 \{(x - 3)^2 + y^2\}$$ $$\Rightarrow x^2 + 4 - 4x + y^2 = 4x^2 + 36 - 24x + 4y^2$$ $$\Rightarrow 3x^2 - 20x + 3y^2 + 32 = 0$$ $$\Rightarrow x^2 + y^2 - 2\left(\frac{10}{3}\right)x + \frac{32}{3} = 0$$:. Radius = $$\sqrt{\left(\frac{10}{3}\right)^2 - \frac{32}{3}} = \sqrt{\frac{100}{9} - \frac{32}{3}}$$ $$=\sqrt{\frac{100-96}{9}}=\frac{2}{3}=\gamma$$ and centre $$\equiv \left(\frac{10}{3}, 0\right) \equiv (\alpha, \beta)$$ So, $$3(\alpha + \beta + \gamma) = 3\left(\frac{10}{3} + 0 + \frac{2}{3}\right)$$ $$=3\left\lceil \frac{12}{3}\right\rceil = 12$$ # 19. Option (2) is correct. $$f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & \sin 2x \\ \sin^2 x & 1 + \cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x & 1 + \sin 2x \end{vmatrix}$$ Applying $$R_2 \rightarrow R_2 - R_1 \& R_3 \rightarrow R_3 - R_1$$ $$f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & \sin 2x \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix}$$ Applying $$R_3 \rightarrow R_3 - R_2$$ $$f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & \sin 2x \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix}$$ Expanding along C_1 , we get $$= (1 + \sin^2 x) \{1 - 0\} + 1 \{\cos^2 x + \sin 2x\}$$ = 1 + \sin^2 x + \cos^2 x + \sin^2 x = 2 + \sin 2x As $$x \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right] \Rightarrow 2x \in \left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$$ $$\Rightarrow \frac{\sqrt{3}}{2} < \sin 2x \le 1 \Rightarrow 2 + \frac{\sqrt{3}}{2} \le 2 + \sin 2x < 3$$ Maximum value (α) = 2 + 1 = 3 Minimum value ($$\beta$$) = $2 + \frac{\sqrt{3}}{2}$ Hence, $$\beta^2 - 2\sqrt{\alpha} = \left(2 + \frac{\sqrt{3}}{2}\right)^2 - 2(\sqrt{3})$$ $$=4+\frac{3}{4}+2\sqrt{3}-2\sqrt{3}=\frac{19}{4}$$ #### HINT: Solve the given function by expanding the determinant using row or column operations. # 20. Option (4) is correct. Negation of $$q \lor ((\sim q) \land p)$$ $$= \sim [q \vee ((\sim q) \wedge p)]$$ $$= \sim q \land \sim ((-q) \land p)$$ $$= \sim q \land (q \lor \sim p)$$ $$= (\sim q \land q) \lor (\sim q \land \sim p)$$ $$= F \lor (\sim q \land \sim p) = (\sim q) \land (\sim p)$$ #### HINT: Negation of p is $\sim p$. # **Section B** # 21. Correct answer is [3501]. Here, $$\vec{v} = \alpha \hat{i} + 2\hat{j} - 3\hat{k}$$ $$\vec{w} = 2\alpha \hat{i} + \hat{i} - \hat{k}$$ $$\vec{v} \times \vec{w} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \alpha & 2 & -3 \\ 2\alpha & 1 & -1 \end{vmatrix} = \hat{i}(-2+3) - \hat{j}(-\alpha+6\alpha)$$ $+\hat{k}(\alpha-4\alpha)$ $$=\hat{i}-(5\alpha)\hat{j}-(3\alpha)\hat{k}$$ Now, $\vec{u} \cdot (\vec{v} \times \vec{w}) = |\vec{u}| |\vec{v} \times \vec{w}| \cos \theta$ $$\therefore \cos \theta = -1 \qquad (\because [\vec{u} \ \vec{v} \ \vec{w}] \text{ is least})$$ $$\Rightarrow -\alpha \sqrt{1 + 34\alpha^2} = -\alpha \sqrt{3401}$$ $$\Rightarrow 1 + 34\alpha^2 = 3401 \Rightarrow 34\alpha^2 = 3400$$ $$\Rightarrow \alpha = 10$$ Now, $\vec{u} = \lambda(\vec{v} \times \vec{w}) = \lambda(\hat{i} - 5\alpha\hat{j} - 3\alpha\hat{k})$ $$\Rightarrow |\lambda| \sqrt{3401} = 10 \Rightarrow |\lambda| = \frac{10}{\sqrt{3401}} \Rightarrow \lambda = \pm \frac{10}{\sqrt{3401}}$$ $$\vec{u} = \pm \frac{10}{\sqrt{3401}} (\hat{i} - 5\hat{j} - 30\hat{k})$$ $$\Rightarrow |\vec{u}.\hat{i}|^2 = \frac{10}{\sqrt{3401}} \times \frac{10}{\sqrt{3401}} = \frac{100}{3401} = \frac{m}{n}$$ $$\therefore m + n = 100 + 3401 = 3501$$ #### 22. Correct answer is [50400]. Vowels \rightarrow A, A, A, I, I, O \rightarrow 6 Consonants \rightarrow S, S, S, N, N, T \rightarrow 7 Since vowels are together, so number of words $$= \left(\frac{8!}{4!2!}\right) \times \left(\frac{6!}{3!2!}\right)$$ $$= \left(\frac{8 \times 7 \times 6 \times 5 \times 4!}{4!2!}\right) \times \left(\frac{6 \times 5 \times 4 \times 3!}{3! \times 2!}\right)$$ $$= 840 \times 60 = 50400$$ #### 23. Option [29] is correct. $$19^{200} + 23^{200} = (21 - 2)^{200} + (21 + 2)^{200}$$ $$= 2\left\{ \left(\frac{200}{0}\right) 21^{200} + \left(\frac{200}{2}\right) 21^{198} 2^2 + \dots + \left(\frac{200}{200}\right) 2^{200} \right\}$$ $$= 49q + 2^{201} = 49q + 8^{67} = 49q + (7+1)^{67}$$ $$= 49q + \left[\left(\frac{67}{0}\right) 7^{67} + \left(\frac{67}{1}\right) 7^{66} + \dots + \left(\frac{67}{65}\right) 7^2 + \left(\frac{67}{66}\right) 7 + \left(\frac{67}{67}\right) \right]$$ $$= 49q + 49(m) + 67 \times 7 + 1$$ $$\therefore \text{ Remainder} = \frac{67 \times 7 + 1}{49} \text{ i.e., } 29$$ # 24. Correct answer is [514]. No. divisible by 2 = 450 No. divisible by 3 = 300 No. divisible by 7 = 128 No. divisible by 2 and 7 = 64 No. divisible by 3 & 7 = 43 No. divisible by 2 & 3 = 150 No. divisible by 2, 3 and 7 = 21 ∴ Required number $$= (450 + 300 - 150) + (-64 - 43) + 21 = 600 - 86 = 514$$ # 25. Correct answer is [A]. Let $$\int_{0}^{2} f(t)dt = \mu$$ $$\Rightarrow f'(x) + f(x) = \mu$$ The solution f(x) $e^{\int dx} = \int \mu . e^{\int dx} dx$ $$f(x). e^x = \int \mu e^x dx = \mu e^x + C$$ Use $$f(0) = e^{-2}$$ $$\Rightarrow e^{-2}(1) = \mu(1) + C \Rightarrow C = e^{-2} - \mu$$ $$\therefore \text{ Solution is } f(x) = e^{-x} \left(\mu e^x + e^{-2} - \mu \right)$$ $$=\mu + e^{-x}(e^{-2} - \mu)$$ So, $$\mu = \int_{0}^{2} f(t)dt = \int_{0}^{2} \mu + (e^{-2} - \mu)e^{-t}dt$$ $$\Rightarrow \mu = \left[\mu t + \frac{(e^{-2} - \mu)e^{-t}}{(-1)} \right]_0^2$$ $$= [2\mu - (e^{-2} - \mu)e^{-2}] - [0 - (e^{-2} - \mu)e^{-0}]$$ $$\mu = e^{-4} - e^{-2}/e^{-2} \Rightarrow \mu = e^{-2} - 1$$ So, $$2f(0) - f(2) = 2e^{-2} - 2e^{-2} + 1 = 1$$ # 26. Correct answer is [14]. $$f(x) = x^2 + g'(1) x + g''(2)$$...(i) On differentiating, we get $$f'(x) = 2x + g'(1) \qquad ...(ii)$$ $$\Rightarrow f''(x) = 2$$ And $$g(x) = f(1) x^2 + xf'(x) + f''(x)$$ $$= f(1) x^2 + x (2x + g'(1)) + 2$$ $$= f(1) x^{2} + 2x^{2} + g'(1) x + 2 \qquad \dots(iii)$$ $$\Rightarrow g'(x) = 2xf(1) + 4x + g'(1) \qquad ...(iv)$$ $$\Rightarrow g''(x) = 2f(1) + 4 \qquad ...(v)$$ At $x = 1$ eqn (iv) $$g'(1) = 2f(1) + 4 + g'(1)$$ $$\Rightarrow 2f(1) = -4$$ $$\Rightarrow f(1) = -2 \Rightarrow g''(x) = 0$$ Also, $g''(2) = 2(-2) + 4 = 0$ Using (i), $f(1) = 1 + g'(1) + g''(2)$ $$\Rightarrow -2 = 1 + g'(1) = 0 \Rightarrow g'(1) = -3$$ $$\therefore f(x) = x^2 - 3x \Rightarrow f(4) - g(4)$$ $$= (16 - 12) - (-12 + 2) = 14$$ $$g(x) = -3x + 2$$ #### HINT: Find the derivatives of the given differential equation and hence find the required value. #### 27. Correct answer is [62]. $$y = x |x-3| = x (3-x)$$; as $-1 \le x \le 2$ $$\therefore \text{ Required area (A)} = \left| \int_{-1}^{0} (3x - x^2) dx \right| + \int_{0}^{2} (3x - x^2) dx$$ $$= \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_{-1}^{0} + \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_{0}^{2}$$ $$= \left| (0 - 0) - \left(\frac{3}{2} + \frac{1}{3} \right) \right| + \left[\left(6 - \frac{8}{3} \right) - (0) \right]$$ $$= \left| -\left(\frac{9 + 2}{6} \right) \right| + \left[\frac{18 - 8}{3} \right] = \frac{11}{6} + \frac{10}{3} = \frac{11 + 22}{6} = \frac{31}{6}$$ So, $$12A = 12 \times \frac{31}{6} = 62$$ #### 28. Correct answer is [63]. Let I = $$\int_{0}^{1} (x^{21} + x^{14} + x^{7})(2x^{14} + 3x^{7} + 6)^{\frac{1}{7}} dx$$ = $$\int_{0}^{1} x(x^{20} + x^{13} + x^{6})(2x^{14} + 3x^{7} + 6)^{\frac{1}{7}} dx$$ = $$\int_{0}^{1} (x^{20} + x^{13} + x^{6})(2x^{21} + 3x^{14} + 6x^{7})^{\frac{1}{7}} dx$$ Let $2x^{21} + 3x^{14} + 6x^{7} = u$ $$\Rightarrow (42x^{20} + 42x^{13} + 42x^{6}) dx = du$$ $$\Rightarrow (x^{20} + x^{13} + x^{6}) dx = \frac{du}{42}$$ $$x = 0 \Rightarrow u = 0$$ $$x = 1 \Rightarrow u = 2 + 3 + 6 = 11$$ $$\therefore x = \int_{0}^{11} \frac{u^{1/7}}{42} du = \frac{1}{42} \left[\frac{u^{8/7}}{8} \right]_{0}^{11}$$ $$= \frac{1}{42} \left[\frac{7}{8} u^{\frac{8}{7}} \right]_{0}^{11} = \frac{1}{48} (11^{\frac{8}{7}}) = \frac{1}{l} (11)^{\frac{m}{n}}$$ $$\Rightarrow l = 48, m = 8, n = 7$$ $$\therefore l + m + n = 48 + 8 + 7 = 63$$ #### 29. Correct answer is [7.54]. $$S_4 = \frac{4}{2}[2a_1 + 3d]$$ $$\Rightarrow 50 = 2[16 + 3d] \qquad [\because a_1 = 8]$$ $$\Rightarrow 25 = 16 + 3d \Rightarrow 3d = 9 \Rightarrow d = 3$$ Also, sum of last 4 terms = 170 $$\frac{4}{2}[2[8 + (n-4)d] + 3d] = 170$$ $$\Rightarrow 2[2(8 + (n-4)3) + 9] = 170$$ $$\Rightarrow n - 4 = 10 \Rightarrow n = 14$$ $$\therefore T_7 \times T_8 = (8 + 6d) \times (8 + 7d)$$ $$= (8 + 18) \times (8 + 21) = 26 \times 29 = 754$$ #### 30. Correct answer is [11]. Here, $$\overrightarrow{AC} = (2-2)\hat{i} + (3-6)\hat{j} + (-1-2)\hat{k}$$ $= 0\hat{i} - 3\hat{j} - 3\hat{k}$ $\overrightarrow{BD} = (4+4)\hat{i} + (5-0)\hat{j} + (0-\lambda)\hat{k}$ $= 8\hat{i} + 5\hat{j} - \lambda\hat{k}$ \therefore Area $= \frac{1}{2}(\overrightarrow{AC} \times \overrightarrow{BD})$ $18 = \frac{1}{2}\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -3 & -3 \\ 8 & 5 & -\lambda \end{vmatrix}$ $36 = |(3\lambda + 15)\hat{i} - (0 + 24)\hat{j} + (0 + 24)\hat{k}|$ $= |(3\lambda + 15)\hat{i} - 24\hat{j} + 24\hat{k}|$ $\Rightarrow 36^2 = 9\lambda^2 + 225 + 90\lambda + 576 + 576$ $\Rightarrow 9\lambda^2 + 90\lambda + 81 = 0 \Rightarrow \lambda^2 + 10\lambda + 9 = 0$ $\Rightarrow \lambda^2 + 9\lambda + \lambda + 9 = 0 \Rightarrow (\lambda + 9)(\lambda + 1) = 0$ $\therefore \lambda = -1$ $\therefore |\lambda|$ So, $5 - 6\lambda = 5 - 6(-1) = 5 + 6 = 11$